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Abstract

The rapid progress of Large Language Models (LLMs) has made them capable of
performing astonishingly well on various tasks including document completion
and question answering. The unregulated use of these models, however, can
potentially lead to malicious consequences such as plagiarism, generating fake
news, spamming, etc. Therefore, reliable detection of AI-generated text can be
critical to ensure the responsible use of LLMs. Recent works attempt to tackle this
problem either using certain model signatures present in the generated text outputs
or by applying watermarking techniques that imprint specific patterns onto them.
In this paper, both empirically and theoretically, we show that these detectors are
not reliable in practical scenarios. Empirically, we show that paraphrasing attacks,
where a light paraphraser is applied on top of the generative text model, can break
a whole range of detectors, including the ones using the watermarking schemes as
well as neural network-based detectors and zero-shot classifiers. We then provide
a theoretical impossibility result indicating that for a sufficiently good language
model, even the best-possible detector can only perform marginally better than a
random classifier. Finally, we show that even LLMs protected by watermarking
schemes can be vulnerable against spoofing attacks where adversarial humans can
infer hidden watermarking signatures and add them to their generated text to be
detected as text generated by the LLMs, potentially causing reputational damages
to their developers. We believe these results can open an honest conversation in the
community regarding the ethical and reliable use of AI-generated text.

1 Introduction

Artificial Intelligence (AI) has made tremendous advances in recent years, from generative models in
computer vision [Rombach et al., 2022, Saharia et al., 2022] to generative models in natural language
processing (NLP) [Brown et al., 2020, Zhang et al., 2022, Raffel et al., 2019]. Large Language
Models (LLMs) can now generate texts of supreme quality with the potential in many applications.
For example, the recent model of ChatGPT [OpenAI, 2022] can generate human-like texts for various
tasks such as writing codes for computer programs, lyrics for songs, completing documents, and
question answering; its applications are endless. The trend in NLP shows that these LLMs will
even get better with time. However, this comes with a significant challenge in terms of authenticity
and regulations. AI tools have the potential to be misused by users for unethical purposes such as
plagiarism, generating fake news, spamming, generating fake product reviews, and manipulating
web content for social engineering in ways that can have negative impacts on society [Adelani et al.,
2020, Weiss, 2019]. Some news articles rewritten by AI have led to many fundamental errors in them
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Figure 1: An illustration of vulnerabilities of existing AI-text detectors. We consider both
watermarking-based and non-watermarking-based detectors and show that they are not reliable
in practical scenarios. Colored arrow paths show the potential pipelines for adversaries to avoid detec-
tion. In red: an attacker can use a paraphraser to remove the LLM signatures from an AI-generated
text to avoid detection. We show that this attack can break a wide range of detectors. We provide
an impossibility result indicating that for a sufficiently good language model, even the best-possible
detector can perform only marginally better than a random classifier. In blue: An adversary can query
the soft watermarked LLM multiple times to learn its watermarking scheme. This information can be
used to spoof the watermark detector by composing human text that is detected to be watermarked.

[Christian, 2023]. Hence, there is a need to ensure the responsible use of these generative AI tools. In
order to aid this, a lot of recent research focuses on detecting AI-generated texts.

Several detection works study this problem as a binary classification problem [OpenAI, 2019, Jawahar
et al., 2020, Mitchell et al., 2023, Bakhtin et al., 2019, Fagni et al., 2020]. For example, OpenAI
fine-tunes RoBERTa-based [Liu et al., 2019] GPT-2 detector models to distinguish between non-AI
generated and GPT-2 generated texts [OpenAI, 2019]. This requires such a detector to be fine-
tuned with supervision on each new LLM for reliable detection. Another stream of work focuses
on zero-shot AI text detection without any additional training overhead [Solaiman et al., 2019,
Ippolito et al., 2019, Gehrmann et al., 2019]. These works evaluate the expected per-token log
probability of texts and perform thresholding to detect AI-generated texts. Mitchell et al. [2023]
observe that AI-generated passages tend to lie in negative curvature of log probability of texts. They
propose DetectGPT, a zero-shot LLM text detection method, to leverage this observation. Since these
approaches rely on a neural network for their detection, they can be vulnerable to adversarial and
poisoning attacks [Goodfellow et al., 2014, Sadasivan et al., 2023, Kumar et al., 2022, Wang et al.,
2022]. Another line of work aims to watermark AI-generated texts to ease their detection [Atallah
et al., 2001, Wilson et al., 2014, Kirchenbauer et al., 2023, Zhao et al., 2023]. Watermarking eases the
detection of LLM output text by imprinting specific patterns on them. Soft watermarking proposed
in Kirchenbauer et al. [2023] partitions tokens into green and red lists to help create these patterns.
A watermarked LLM samples a token, with high probability, from the green list determined by its
prefix token. These watermarks are often imperceptible to humans.

In this paper, through both empirical and theoretical analysis, we show that state-of-the-art AI-text
detectors are not reliable in practical scenarios. We first study empirical attacks on soft watermarking
[Kirchenbauer et al., 2023], and a wide range of zero-shot [Mitchell et al., 2023] and neural network-
based detectors [OpenAI, 2019]. We show that a paraphrasing attack, where a lightweight neural
network-based paraphraser is applied to the output text of the AI-generative model, can evade various
types of detectors. Before highlighting the results, let us provide an intuition why this attack is
successful. For a given sentence s, suppose P (s) is the set of all paraphrased sentences that have
similar meanings to the sentence s. Moreover, let L(s) be the set of sentences the source LLM can
output with meanings similar to s. Suppose a user has generated s using an LLM and wants to evade
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detection. If |L(s)| ≪ |P (s)|, the user can randomly sample from P (s) and avoid detection (if the
detection model has a reasonably low false positive rate). Moreover, if |L(s)| is comparable to |P (s)|,
the detector cannot have low false positive and negative rates simultaneously.

With this intuition in mind, in §2, we use light-weight neural network-based paraphrasers (2.3× and
5.5× smaller than the source LLM in terms of the number of parameters) to rephrase the source
LLM’s output text. Our experiments show that this automated paraphrasing attack can drastically
reduce the accuracy of various detectors, including the ones using soft watermarking as well as neural
network-based detectors and zero-shot classifiers. For example, a PEGASUS-based paraphraser
[Zhang et al., 2019] can drop the soft watermarking detector’s [Kirchenbauer et al., 2023] accuracy
from 97% to 80% with just a degradation of 3.5 in the perplexity score. The area under the ROC
curves of zero-shot detectors [Mitchell et al., 2023] drop from 96.5% to 25.2% using a T5-based
paraphraser [Damodaran, 2021]. We also observe that the performance of neural network-based
trained detectors [OpenAI, 2019] deteriorate significantly after our paraphrasing attack. For instance,
the true positive rate of the RoBERTa-Large-Detector from OpenAI drops from 100% to 60% at a
realistic low false positive rate of 1%.

In §3, we present an impossibility result regarding the detection of AI-generated texts. As language
models improve over time, AI-generated texts become increasingly similar to human-generated texts,
making them harder to detect. This similarity is reflected in the decreasing total variation distance
between the distributions of human and AI-generated text sequences [OpenAI, 2023]. Theorem 1
bounds the area under the receiver operating characteristic (ROC) curve of the best possible detector
D as:

AUROC(D) ≤
1

2
+ TV(M,H)−

TV(M,H)2

2

where TV(M,H) is the total variation distance between the text distributions produced by an AI-
model M and humans H. It shows that as the total variation distance diminishes, the best-possible
detection performance approaches 1/2, which represents the AUROC corresponding to a classifier
that randomly labels text as AI or human-generated. Thus, for a sufficiently advanced language
model, even the best-possible detector performs only marginally better than a random classifier. The
aim of this analysis is to urge caution when dealing with detection systems that purport to detect
text produced by any AI model. We complement our result with a tightness analysis, where we
demonstrate that for a given human distribution H, there exists a distribution M and a detector D for
which the above bound holds with equality.

Although our analysis considers the text generated by all humans and general language models, it
can also be applied to specific scenarios, such as particular writing styles or sentence paraphrasing,
by defining M and H appropriately. For example, it could be used to show that AI-generated text,
even with an embedded watermark, can be made difficult to detect by simply passing it through
a paraphrasing tool. For a sequence s generated by a language model, we set M and H to be the
distributions of sequences of similar meaning to s produced by the paraphraser and humans. The goal
of the paraphraser is to make its output distribution similar to the distribution of human-generated
sequences with respect to the total variation distance. The above result puts a constraint on the
performance of the detector on the rephrased AI text.

Finally, we discuss the possibility of spoofing attacks on text generative models in §4. In this
setting, an attacker generates a non-AI text that is detected to be AI-generated. An adversary can
potentially launch spoofing attacks to produce derogatory texts that are detected to be AI-generated
to affect the reputation of the target LLM’s developers. As a proof-of-concept, we show that the
soft watermarking detectors [Kirchenbauer et al., 2023] can be spoofed to detect texts composed by
humans as watermarked. Though the random seed used for generating watermarked text is private,
we develop an attack that smartly queries the target LLM multiple times to learn its watermarking
scheme. An adversarial human can then use this information to compose texts that are detected to be
watermarked. Figure 1 shows an illustration of vulnerabilities of existing AI-text detectors.

Identifying AI-generated text is a critical problem to avoid their misuse by users for unethical purposes
such as plagiarism, generating fake news and spamming. However, deploying vulnerable detectors is
not the right solution to tackle this issue since it can cause its own damages such as falsely accusing a
human of plagiarism. Our results highlight sensitivities of a wide range of detectors to simple practical
attacks such as paraphrasing attacks. More importantly, our results indicate the impossibility of de-
veloping reliable detectors in practical scenarios— to maintain reliable detection performance, LLMs
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Text # tokens # green tokens Detector accuracy Perplexity

Watermarked LLM output 19042 11078 97% 6.7

PEGASUS-based paraphrasing 16773 7412 80% 10.2

T5-based paraphrasing 15164 6493 64% 16.7

T5-based paraphrasing 14913 6107 57% 18.7

Table 1: Results of paraphrasing attacks on soft watermarking [Kirchenbauer et al., 2023]. For testing,
we consider 100 text passages from XSum [Narayan et al., 2018]. The watermarked output text from
the target AI model consists of ∼ 58% green list tokens. The PEGASUS-based [Zhang et al., 2019]
paraphrased text consists of only ∼ 44% green list tokens. Hence, the detector accuracy drops from
97% to 80%, making it unreliable. Note that these PEGASUS-based paraphrased texts only degrade
the perplexity measure by 3.5. Even a lighter T5-based paraphraser can affect the detector accuracy
quite a bit without degrading the text quality significantly.

would have to trade off their performance. We hope that these findings can initiate an honest dialogue
within the community concerning the ethical and dependable utilization of AI-generated text.

2 Evading AI-Detectors using Paraphrasing Attacks

Detecting AI-generated text is crucial for ensuring the security of an LLM and avoiding type-II errors
(not detecting LLM output as AI-generated text). To protect an LLM’s ownership, a dependable
detector should be able to detect AI-generated texts with high accuracy. In this section, we discuss
paraphrasing attacks that can degrade type-II errors of state-of-the-art AI text detectors such as soft
watermarking [Kirchenbauer et al., 2023], zero-shot detectors [Mitchell et al., 2023], and trained
neural network-based detectors [OpenAI, 2019]. These detectors identify if a given text contains
distinct LLM signatures, indicating that it may be AI-generated. The idea here is that a paraphraser
can potentially remove these signatures without affecting the meaning of the text. While we discuss
this attack theoretically in §3, the main intuition here is as follows:

Let s represent a sentence and S represent a set of all meaningful sentences to humans. Suppose a
function P : S → 2S exists such that ∀s′ ∈ P (s), the meaning of s and s′ are the same with respect
to humans. In other words, P (s) is the set of sentences with a similar meaning to the sentence s.
Let L : S → 2S such that L(s) is the set of sentences the source LLM can output with the same
meaning as s. Further, the sentences in L(s) are detected to be AI-generated by a reliable detector,
and L(s) ⊆ P (S) so that the output of the AI model makes sense to humans. If |L(s)| is comparable
to |P (s)|, the detector might label many human-written texts as AI-generated (high type-I error).
However, if |L(s)| is small, we can randomly choose a sentence from P (s) to evade the detector with
a high probability (affecting type-II error). Thus, in this context of paraphrasing attacks, detectors
face a trade-off between minimizing type-I and type-II errors.

2.1 Paraphrasing Attacks on Watermarked AI-generated Text

Here, we perform our experiments on the soft watermarking scheme1 proposed in Kirchenbauer et al.
[2023]. In this scheme, an output token of the LLM is selected from a green list determined by its
prefix. We expect paraphrasing to remove the watermark signature from the target LLM’s output.
The target AI text generator uses a transformer-based OPT-1.3B [Zhang et al., 2022] architecture
with 1.3B parameters2. We use a T5-based [Raffel et al., 2019] paraphrasing model [Damodaran,
2021] with 222M parameters3 and a PEGASUS-based [Zhang et al., 2019] paraphrasing model with
568M parameters4 (2.3× and 5.8× smaller than the target LLM, respectively). The target LLM is
trained to perform text completion tasks on extensive data, while the smaller paraphrasing model
is fine-tuned only for paraphrasing tasks. For these reasons, the paraphrasing model we use for our
attack is lighter than the target OPT-based model.

1https://github.com/jwkirchenbauer/lm-watermarking
2https://huggingface.co/facebook/opt-1.3b
3https://huggingface.co/prithivida/parrot_paraphraser_on_T5
4https://huggingface.co/tuner007/pegasus_summarizer
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Description Text

Input prompt
(misinformation†)

Drinking bleach is the best way to tackle COVID-19. WHO announced that
vaccination for COVID-19 is ineffective. CDC is urging the citizens to drink
bleach everyday. The health department has officially confirmed that

Detected
watermarked text

the vaccine is useless. The World Health Organization made shocking
statement, that the vaccine is ineffective, because it does not prevent people
from getting infected, which means it is useless. CDC is also calling for
people to drink bleach daily to cleanse the body. [continues...]

Undetected
PEGASUS-based

paraphrasing

The vaccine is useless. The vaccine is useless because it doesn’t prevent
people from getting infections, according to the World Health Organization.
The CDC wants people to drink bleach to cleanse their body. The vaccine
is useless according to WHO. The CDC wants people to drink bleach to
cleanse their body. [continues...]

Input prompt

(fake news†)

Latest news: There is no more daylight savings. The Government has
passed a bill to scrape off daylight savings from 2023 onwards, said a US
government official.

Detected
watermarked text

\n\nThe bill was introduced in the US Senate on Wednesday, and the US
House of Representatives got a vote on it on Thursday afternoon. The US
President Donald Trump is expected to sign it. [continues...]

Undetected
PEGASUS-based

paraphrasing

The US House of Representatives voted on the bill on Thursday afternoon,
after it was introduced in the US Senate on Wednesday. It is expected that
Donald Trump will sign it. It will become law if he gets it. [continues...]

Table 2: PEGASUS-based paraphrasing for evading soft watermarking-based detectors. The target AI
generator outputs a watermarked text for an input prompt. This output is detected to be generated by
the watermarked target LLM. We use a PEGASUS-based [Zhang et al., 2019] paraphraser to rephrase
this watermarked output from the target LLM. The paraphraser rephrases sentence by sentence. The
detector does not detect the output text from the paraphraser. However, the paraphrased passage reads
well and means the same as the original watermarked LLM output. At the top rows, we demonstrate
how an input prompt can prompt a target LLM to generate watermarked misinformation. In the
bottom rows, we showcase how an input prompt can induce a target LLM to create watermarked fake
news. Using paraphrasing attacks in this manner, an attacker can spread fake news or misinformation
without getting detected.
† contains misinformation only to demonstrate that LLMs can be used for malicious purposes.

Figure 2: Accuracy of the soft watermarking de-
tector on paraphrased LLM outputs plotted against
perplexity. The lower the perplexity is, the better
the quality of the text is.

The paraphraser takes the watermarked LLM
text sentence by sentence as input. We use
100 passages from the Extreme Summarization
(XSum) dataset [Narayan et al., 2018] for our
evaluations5. The passages from this dataset are
input to the target AI model to generate water-
marked text. Using the PEGASUS-based para-
phraser, the detector’s accuracy drops from 97%
to 80% with only a trade-off of 3.5 in perplexity
score (see Table 1). This paraphrasing strategy
reduces the percentage of green list tokens in the
watermarked text from 58% (before paraphras-
ing) to 44% (after paraphrasing). Table 2 shows
some example outputs from the target soft water-
marked LLM before and after paraphrasing. We
also use a much smaller T5-based paraphraser
[Damodaran, 2021] to show that even such a
naïve paraphraser can drop the detector’s ac-
curacy from 97% to 57%. Figure 2 shows the
trade-off between the detection accuracy and the T5-based paraphraser’s output text quality (measured

5https://huggingface.co/datasets/xsum
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Description z-score Text

Input prompt
(misinformation†)

– Morocco won the 2022 soccer world cup because

Detected GPT text 1.47

Morocco won the 2022 soccer world cup because they are the best. Be-
cause they had their own style of soccer, the whole world has adopted the
idea. Not to forget the other reason why we came to this tournament. We
all know there will be some serious bad blood if the host are eliminated
from the final and not given any chance to play their best. In the past,
host nations have had to host the tournament with a different format rather
than the original one, where the highest ranked team went, regardless of
gender, to the quarter finals.

Undetected
T5-based

paraphrasing
0.80

morocco won the 2022 world cup because they are the best. because of
their own style of soccer the whole world followed this idea. Not to forget
the other reason why we came to this tournament. we all know if the host
is eliminated from the final and given no chance to play their best there
will be much bloodshed. In the past, host nations have had to host the
tournament with a different format rather than the original one, where the
highest ranked team went, regardless of gender, to the quarter finals.

Table 3: Evading DetectGPT using a T5-based paraphraser. DetectGPT classifies a text to be
generated by GPT-2 if the z-score is greather than 1. After paraphrasing, the z-score drops below the
threshold and the text is not detected as AI-generated.
† contains misinformation only to demonstrate that LLMs can be used for malicious purposes.

using perplexity score). However, we note that perplexity is a proxy metric for evaluating the quality
of texts since it depends on another LLM for computing the score. We use a larger OPT-2.7B6 [Zhang
et al., 2022] with 2.7B parameters for computing the perplexity scores.

2.2 Paraphrasing Attacks on Non-Watermarked AI-generated texts

Non-watermarking detectors such as trained classifiers [OpenAI, 2019] and zero-shot classifiers
[Mitchell et al., 2023, Gehrmann et al., 2019, Ippolito et al., 2019, Solaiman et al., 2019] use the
presence of LLM-specific signatures in AI-generated texts for their detection. Neural network-based
trained detectors such as RoBERTa-Large-Detector from OpenAI [OpenAI, 2019] are trained or
fine-tuned for binary classification with datasets containing human and AI-generated texts. Zero-shot
classifiers leverage specific statistical properties of the source LLM outputs for their detection. Here,
we perform experiments on these non-watermarking detectors to show they are vulnerable to our
paraphrasing attack.

We use a pre-trained GPT-2 Medium7 model [Radford et al., 2019] with 355M parameters to evaluate
our attack on 200 passages from the XSum dataset [Narayan et al., 2018]. We use a T5-based
paraphrasing model [Damodaran, 2021] with 222M parameters to rephrase the output texts from the
target GPT-2 Medium model. Figure 3 shows the effectiveness of the paraphrasing attack over these
detectors. The AUROC scores of DetectGPT [Mitchell et al., 2023] drop from 96.5% (before the
attack) to 59.8% (after the attack). Note that AUROC of 50, 0% corresponds to a random detector.
The rest of the zero-shot detectors [Solaiman et al., 2019, Gehrmann et al., 2019, Ippolito et al.,
2019] perform also very poorly after our attack. Though the performance of the trained neural
network-based detectors [OpenAI, 2019] is better than that of zero-shot detectors, they are also not
reliable. For example, the true positive rate of OpenAI’s RoBERTa-Large-Detector drops from 100%
to around 80% after our attack at a practical false positive rate of 1%. With multiple queries to the
detector, an adversary can paraphrase more efficiently to bring down the true positive rate of the
RoBERTa-Large-Detector to 60%. Table 3 shows an example of outputs from the GPT-2 model
before and after paraphrasing. As seen in the example, the output of the paraphraser reads well and
means the same as the detected GPT-2 text. We measure the perplexity of the GPT-2 output text to
be 16.3 (Figure 3a). GPT-2 is a relatively old LLM, and it performs poorly when compared to more

6https://huggingface.co/facebook/opt-2.7b
7https://huggingface.co/gpt2-medium
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(a) Before attack: ROC curves for various trained and zero-shot classifiers when
detecting output text from GPT-2.

(b) After attack: ROC curves for non-watermarking detectors when detecting
paraphrased texts. The performance of the zero-shot classifiers drops significantly.
True positive rates of OpenAI’s detectors at low false positive rates drop drastically.

(c) After attack with eight queries to the detectors: If we assume modest query
access to the detectors, the attack can be more efficient. We generate ten paraphras-
ings for each of the GPT-2 texts and choose a paraphrasing randomly, by querying
the detector eight times, that can evade detection. This attack drops the true posi-
tive rates of all non-watermarking detectors significantly at a practically low false
positive rate of 1%.

Figure 3: ROC curves for various trained and zero-shot detectors before and after rephrasing. In the
plot legend – perturbation refers to the zero-shot methods in Mitchell et al. [2023]; threshold
refers to the zero-shot methods in Solaiman et al. [2019], Gehrmann et al. [2019], Ippolito et al.
[2019]; roberta refers to OpeanAI’s trained detectors [OpenAI, 2019].

recent LLMs. The perplexity of the GPT-2 text after paraphrasing is 27.2 (Figure 3b). The perplexity
score only degrades by 2 with multiple queries to the detector (Figure 3c).
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3 Impossibility Results for Reliable Detection of AI-Generated Text

Detecting the misuse of language models in the real world, such as plagiarism and mass propa-
ganda, necessitates the identification of text produced by all kinds of language models, including
those without watermarks. However, as these models improve over time, the generated text looks
increasingly similar to human text, which complicates the detection process. Specifically, the total
variation distance between the distributions of AI-generated and human-generated text sequences
diminishes as language models become more sophisticated. This section presents a fundamental
constraint on general AI-text detection, demonstrating that even the most effective detector performs
only marginally better than a random classifier when dealing with a sufficiently advanced language
model. The purpose of this analysis is to caution against relying too heavily on detection systems that
claim to identify AI-generated text. We first consider the case of non-watermarked language models
and then extend our result to watermarked ones.

In the following theorem, we formalize the above statement by showing an upper bound on the area
under the ROC curve of an arbitrary detector in terms of the total variation distance between the
distributions for AI and human-generated text. This bound indicates that as the distance between
these distributions diminishes, the AUROC bound approaches 1/2, which represents the baseline
performance corresponding to a detector that randomly labels text as AI or human-generated. We
define M and H as the text distributions produced by an AI model and humans, respectively, over the
set of all possible text sequences Ω. We use TV(M,H) to denote the total variation distance between
these two distributions and a function D : Ω → R that maps every sequence in Ω to a real number.
Sequences are classified into AI and human-generated by applying a threshold γ on this number. By
adjusting the parameter γ, we can tune the sensitivity of the detector to AI and human-generated texts
to obtain an ROC curve.

Theorem 1. The area under the ROC of any detector D is bounded as

AUROC(D) ≤
1

2
+ TV(M,H)−

TV(M,H)2

2
.

Proof. The ROC is a plot between the true positive rate (TPR) and the false positive rate (FPR) which
are defined as follows:

TPRγ = Ps∼M[D(s) ≥ γ]

and FPRγ = Ps∼H[D(s) ≥ γ],

where γ is some classifier parameter. We can bound the difference between the TPRγ and the FPRγ

by the total variation between M and H:

|TPRγ − FPRγ | = |Ps∼M[D(s) ≥ γ]− Ps∼H[D(s) ≥ γ]| ≤ TV(M,H) (1)

TPRγ ≤ FPRγ + TV(M,H). (2)

Since the TPRγ is also bounded by 1 we have:

TPRγ ≤ min(FPRγ + TV(M,H), 1). (3)

Denoting FPRγ , TPRγ , and TV(M,H) with x, y, and tv for brevity, we bound the AUROC as
follows:

AUROC(D) =

∫ 1

0

y dx ≤

∫ 1

0

min(x+ tv, 1)dx

=

∫ 1−tv

0

(x+ tv)dx+

∫ 1

1−tv

dx

=

∣

∣

∣

∣

x2

2
+ tvx

∣

∣

∣

∣

1−tv

0

+ |x|
1
1−tv

=
(1− tv)2

2
+ tv(1− tv) + tv

=
1

2
+

tv2

2
− tv + tv − tv2 + tv

=
1

2
+ tv −

tv2

2
.
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Figure 4: Comparing the performance, in terms
of area under the ROC curve, of the best-possible
detector to that of the baseline performance corre-
sponding to a random classifier.

Figure 4 shows how the above bound grows
as a function of the total variation. For a de-
tector to have a good performance (say, AU-
ROC ≥ 0.9), the distributions of human and
AI-generated texts must be very different from
each other (total variation > 0.5). As the two
distributions become similar (say, total varia-
tion ≤ 0.2), the performance of even the best-
possible detector is not good (AUROC < 0.7).
This shows that distinguishing the text produced
by a non-watermarked language model from a
human-generated one is a fundamentally diffi-
cult task. Note that, for a watermarked model,
the above bound can be close to one as the total
variation distance between the watermarked dis-
tribution and human-generated distribution can
be high. In what follows, we discuss how para-
phrasing attacks can be effective in such cases.

Paraphrasing to Evade Detection: Although our analysis considers the text generated by all humans
and general language models, it can also be applied to specific scenarios, such as particular writing
styles or sentence paraphrasing, by defining M and H appropriately. For example, it could be used
to show that AI-generated text, even with watermarks, can be made difficult to detect by simply
passing it through a paraphrasing tool. Consider a paraphraser that takes a sequence s generated by
an AI model as input and produces a human-like sequence with similar meaning. Set M = RM(s)
and H = RH(s) to be the distribution of sequences with similar meanings to s produced by the
paraphraser and humans, respectively. The goal of the paraphraser is to make its distribution RM(s)
as similar to the human distribution RH(s) as possible, essentially reducing the total variation
distance between them. Theorem 1 puts the following bound on the performance of a detector D that
seeks to detect the outputs of the paraphraser from the sequences produced by humans.

Corollary 1. The area under the ROC of the detector D is bounded as

AUROC(D) ≤
1

2
+ TV(RM(s),RH(s))−

TV(RM(s),RH(s))2

2
.

General Trade-offs between True Positive and False Positive Rates. Another way to understand
the limitations of AI-generated text detectors is directly through the characterization of the trade-offs
between true positive rates and false positive rates. Adapting inequality 2, we have the following
corollaries:

Corollary 2. For any watermarking scheme W ,

Pr
sw∼RM(s)

[sw is watermarked using W ] ≤TV(RM(s),RH(s))+

Pr
sw∼RH(s)

[sw is watermarked using W ],

where RM(s) and RH(s) are respectively the distributions of rephrased sequences for s produced
by the paraphrasing model and humans, respectively.

Humans may have different writing styles. Corollary 2 indicates that if a rephras-
ing model resembles certain human text distribution H (i.e. TV(RM(s),RH(s)) is
small), then either certain people’s writing will be detected falsely as watermarked (i.e.
Prsw∼RH(s)[sw is watermarked using W ] is high) or the paraphrasing model can remove the

watermark (i.e. Prsw∼RM(s)[sw is watermarked respect to W ] is low).

Corollary 3. For any AI-text detector D,

Pr
s∼M

[s is detected as AI-text by D] ≤ TV(M,H) + Pr
s∼H

[s is detected as AI-text by D],

where M and H denote text distributions by the model and by humans, respectively.

Corollary 3 indicates that if a model resembles certain human text distribution H (i.e. TV(M,H)
is small), then either certain people’s writing will be detected falsely as AI-generated (i.e.
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Prs∼H[s is detected as AI-text by D] is high) or the AI-generated text will not be detected reliably
(i.e. Prs∼M[s is detected as AI-text by D] is low).

These results demonstrate fundamental limitations for AI-text detectors, with and without
watermarking schemes.

3.1 Tightness Analysis

In this section, we show that the bound in Theorem 1 is tight. For a given distribution of human-
generated text sequences H, we construct an AI-text distribution M and a detector D such that the
bound holds with equality. Define sublevel sets of the probability density function of the distribution
of human-generated text pdfH over the set of all sequences Ω as follows:

ΩH(c) = {s ∈ Ω | pdfH(s) ≤ c}

where c ∈ R. Assume that, ΩH(0) is not empty. Now, consider a distribution M, with density
function pdfM, which has the following properties:

1. The probability of a sequence drawn from M falling in ΩH(0) is TV(M,H), i.e.,
Ps∼M[s ∈ ΩH(0)] = TV(M,H).

2. pdfM(s) = pdfH(s) for all s ∈ Ω(τ) − Ω(0) where τ > 0 such that Ps∼H[s ∈ Ω(τ)] =
1− TV(M,H).

3. pdfM(s) = 0 for all s ∈ Ω− Ω(τ).

Define a hypothetical detector D that maps each sequence in Ω to the negative of the probability
density function of H, i.e., D(s) = −pdfH(s). Using the definitions of TPRγ and FPRγ , we have:

TPRγ = Ps∼M[D(s) ≥ γ]

= Ps∼M[−pdfH(s) ≥ γ]

= Ps∼M[pdfH(s) ≤ −γ]

= Ps∼M[s ∈ ΩH(−γ)]

Similarly,
FPRγ = Ps∼H[s ∈ ΩH(−γ)].

For γ ∈ [−τ, 0],

TPRγ = Ps∼M[s ∈ ΩH(−γ)]

= Ps∼M[s ∈ ΩH(0)] + Ps∼M[s ∈ ΩH(−γ)− ΩH(0)]

= TV(M,H) + Ps∼M[s ∈ ΩH(−γ)− ΩH(0)] (using property 1)

= TV(M,H) + Ps∼H[s ∈ ΩH(−γ)− ΩH(0)] (using property 2)

= TV(M,H) + Ps∼H[s ∈ ΩH(−γ)]− Ps∼H[s ∈ ΩH(0)] (ΩH(0) ⊆ ΩH(−γ))

= TV(M,H) + FPRγ . (Ps∼H[s ∈ ΩH(0)] = 0)

For γ ∈ [−∞,−τ ], TPRγ = 1, by property 3. Also, as γ goes from 0 to −∞, FPRγ goes from 0 to
1. Therefore, TPRγ = min(FPRγ + TV(M,H), 1) which is similar to Equation 3. Calculating the
AUROC in a similar fashion as in the previous section, we get:

AUROC(D) =
1

2
+ TV(M,H)−

TV(M,H)2

2
.

4 Spoofing Attacks on AI-text Generative Models

A strong AI text detection scheme should have both low type-I error (i.e., human text detected as
AI-generated) and type-II error (i.e., AI-generated text not detected). An AI language detector without
a low type-I error can cause harms as it might wrongly accuse a human of plagiarizing using an
LLM. Moreover, an attacker (adversarial human) can generate a non-AI text that is detected to be
AI-generated. This is called the spoofing attack. An adversary can potentially launch spoofing attacks
to produce derogatory texts that are detected to be AI-generated to affect the reputation of the target
LLM’s developers. In this section, as a proof-of-concept, we show that the soft watermarking detectors

10



Figure 5: Inferred green list score for the token “the”. The plot shows the top 50 words from our set
of common words that are likely to be in the green list. The word “first” occurred ∼ 25% of the time
as suffix to “the”.

Human text
% tokens in

green list
z-score

Detector
output

the first thing you do will be the best thing you do. this is
the reason why you do the first thing very well. if most of
us did the first thing so well this world would be a lot better
place. and it is a very well known fact. people from every
place know this fact. time will prove this point to the all of us.
as you get more money you will also get this fact like other
people do. all of us should do the first thing very well. hence
the first thing you do will be the best thing you do.

42.6 4.36 Watermarked

lot to and where is it about you know and where is it about
you know and where is it that not this we are not him is it
about you know and so for and go is it that.

92.5 9.86 Watermarked

Table 4: Proof-of-concept human-generated texts flagged as watermarked by the soft watermarking
scheme. In the first row, a sensible sentence composed by an adversarial human contains 42.6%
tokens from the green list. In the second row, a nonsense sentence generated by an adversarial human
using our tool contains 92.5% green list tokens. The z-test threshold for watermark detection is 4.

[Kirchenbauer et al., 2023] can be spoofed to detect texts composed by humans as watermarked.
They watermark LLM outputs by asserting the model to output tokens with some specific pattern
that can be easily detected with meager error rates. Soft watermarked texts are majorly composed of
green list tokens. If an adversary can learn the green lists for the soft watermarking scheme, they
can use this information to generate human-written texts that are detected to be watermarked. Our
experiments show that the soft watermarking scheme can be spoofed efficiently. Though the soft
watermarking detector can detect the presence of a watermark very accurately, it cannot be certain
if this pattern is actually generated by a human or an LLM. An adversarial human can compose
derogatory watermarked texts in this fashion that are detected to be watermarked, which might cause
reputational damage to the developers of the watermarked LLM. Therefore, it is important to study
spoofing attacks to avoid such scenarios.

The attack methodology: For an output word s(t), soft watermarking samples a word from its

green list with high probability. The prefix word s(t−1) determines the green list for selecting the

word s(t). The attacker’s objective is to compute a proxy of green lists for the N most commonly
used words in the vocabulary. A smaller N , when compared to the size of the vocabulary, helps
faster computations with a trade-off in the attacker’s knowledge of the watermarking scheme. We
use a small value of N = 181 for our experiments. The attacker can query the watermarked LLM
multiple times to learn the pair-wise occurrences of these N words in the LLM output. Observing
these outputs, the attacker can compute the probability of occurrence of a word given a prefix word

s(t−1). This score can be used as a proxy for computing the green list for the prefix word s(t−1). An
attacker with access to these proxy green lists can compose a text detected to be watermarked, thus
spoofing the detector. In our experiments, we query the watermarked OPT-1.3B [Zhang et al., 2022]
106 times to evaluate the green list scores to evaluate the green list proxies. We find that inputting
nonsense sentences composed of the N common words encourages the LLM to output text majorly
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only composed of these words. This makes the querying more efficient. In Figure 5, we show the
learned green list scores for the prefix word “the” using our querying technique. We build a simple
tool that lets a user create passages token by token. At every step, the user is provided with a list of
potential green list words sorted based on the green list score. These users or adversarial humans try
to generate meaningful passages assisted by our tool. Since most of the words selected by adversarial
humans are likely to be in the green list, we expect the watermarking scheme to detect these texts to
be watermarked. Table 4 shows examples of sentences composed by adversarial humans that are
detected to be watermarked. Even a nonsense sentence generated by an adversarial human can be
detected as watermarked with very high confidence.

5 Discussion

Recent advancements in NLP show that LLMs can generate human-like texts for a various number of
tasks [OpenAI, 2023]. However, this can create several challenges. LLMs can potentially be misused
for plagiarism, spamming, or even social engineering to manipulate the public. This creates a demand
for developing efficient LLM text detectors to reduce the exploitation of publicly available LLMs.
Recent works propose a variety of AI text detectors using watermarking [Kirchenbauer et al., 2023],
zero-shot methods [Mitchell et al., 2023], and trained neural network-based classifiers [OpenAI,
2019]. In this paper, we show both theoretically and empirically, that these state-of-the-art detectors
cannot reliably detect LLM outputs in practical scenarios. Our experiments show that paraphrasing
the LLM outputs helps evade these detectors effectively. Moreover, our theory demonstrates that for
a sufficiently advanced language model, even the best detector can only perform marginally better
than a random classifier. This means that for a detector to have both low type-I and type-II errors, it
will have to trade off the LLM’s performance. We also empirically show that watermarking-based
detectors can be spoofed to make human-composed text detected as watermarked. We show that it is
possible for an attacker to learn the soft watermarking scheme in [Kirchenbauer et al., 2023]. Using
this information, an adversary can launch a spoofing attack where adversarial humans generate texts
that are detected to be watermarked. Spoofing attacks can lead to the generation of watermarked
derogatory passages that might affect the reputation of the watermarked LLM developers.

With the release of GPT-4 [OpenAI, 2023], the applications of LLMs are endless. This also calls for
the need for more secure methods to prevent their misuse. Here, we briefly mention some methods
attackers might choose to break AI detectors in the future. As we demonstrated in this paper, the
emergence of improved paraphrasing models can be a severe threat to AI text detectors. Moreover,
advanced LLMs might be vulnerable to attacks based on smart prompting. For example, attackers
could input a prompt that starts with “Generate a sentence in active voice and present tense using
only the following set of words that I provide...”. High-performance LLMs would have a low entropy
output space (less number of likely output sequences) for this prompt, making it harder to add a strong
LLM signature in their output for detection. The soft watermarking scheme in Kirchenbauer et al.
[2023] is vulnerable to this attack. If the logits of the LLM have low entropy over the vocabulary,
soft watermarking scheme samples the token with the highest logit score (irrespective of the green
list tokens) to preserve model perplexity. Furthermore, in the future, we can expect more open-source
LLMs to be available to attackers. This could help attackers leverage these models to design transfer
attacks to target a larger LLM. Adversarial input prompts could be designed using transfer attacks
such that the target LLM is encouraged to have a low entropy output space. Future research on AI
text detectors must be cautious about these vulnerabilities.

A detector should ideally be helpful in reliably flagging AI-generated texts to prevent the misuse of
LLMs. However, the cost of misidentification by a detector can itself be huge. If the false positive
rate of the detector is not low enough, humans could get wrongly accused of plagiarism. Moreover,
a disparaging passage falsely detected to be AI-generated could affect the reputation of the LLM’s
developers. As a result, the practical applications of AI-text detectors can become unreliable and
invalid. Security methods need not be foolproof. However, we need to make sure that it is not an
easy task for an attacker to break these security defenses. Thus, analyzing the risks of using current
detectors can be vital to avoid creating a false sense of security. We hope that the results presented
in this work can encourage an open and honest discussion in the community about the ethical and
trustworthy applications of generative LLMs.
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